
Análisis de vulnerabilidades en aplicaciones web desarrolladas con
frameworks populares (Laravel, Django, React)

Vulnerability Assessment of Web Applications Using Popular Frameworks (Laravel, Django,
React)

Jose Neczar Macias Mendoza, Roberto Omar Andrade Paredes, Juan Pablo Cuenca Tapia

http://doi.org/10.46652/rgn.v11i49.1601
ISSN 2477-9083
Vol. 11 No. 49, enero-marzo, 2026, e2601601
Quito, Ecuador

Enviado: agosto 30, 2025
Aceptado: octubre 14, 2025

Publicado: diciembre 12, 2025
Publicación Continua

Jose Neczar Macias Mendoza
Universidad Católica de Cuenca | Cuenca | Ecuador | jose.macias.21@est.ucacue.edu.ec
https://orcid.org/0009-0008-7442-0901
Roberto Omar Andrade Paredes
Universidad Católica de Cuenca | Cuenca | Ecuador | roberto.andrade@ucacue.edu.ec
https://orcid.org/0000-0002-7120-281X
Juan Pablo Cuenca Tapia
Universidad Católica de Cuenca | Cuenca | Ecuador | jcuenca@ucacue.edu.ec
https://orcid.org/0000-0001-5982-634X

Resumen

En este articulo presentamos un estudio experimental–cuantitativo sobre vulnerabilidades en aplicaciones
web modernas desarrolladas con Laravel, Django y React. Se construyó un laboratorio replicable con Virtual-
Box y Docker, y se aplicaron OWASP ZAP y Burp Suite en el cual se identificó y valido vulnerabilidades antes
y después de las mitigaciones. La estrategia siguió buenas prácticas de desarrollo seguro (parametrización de
consultas, validación de entradas, cabeceras HTTP de endurecimiento, control de CORS y manejo seguro de
errores). Se observó una reducción promedio del 67,3% en el nivel de riesgo y la eliminación de hallazgos crí-
ticos, lo cual pone en evidencia la eficiencia de la integración de seguridades en el SSDLC (Ciclo de Vida del
Desarrollo de Software). El protocolo propuesto, alineado con OWASP Top 10 (2021), ISO/IEC 27002:2022 y
NIST SP 800-53, es replicable en entornos académicos y corporativos.
Palabras clave: Aplicación informática; Tecnología de la información (programas); Medida de seguridad; Se-
guridad; Tecnología de la información.

http://doi.org/10.46652/rgn.v11i49.1601
http://Vol. 11 No. 49, enero-marzo, 2026, e2601579
http://www.religacion.com

2 Vol. 11 No. 49, 2026. e2601601 | Sección Ingeniería | Peer Reviewed Revista RELIGACION

Abstract

In this article, we present an experimental-quantitative study on vulnerabilities in modern web applications
developed with Laravel, Django, and React. A replicable laboratory was built with VirtualBox and Docker, and
OWASP ZAP and Burp Suite were applied, in which vulnerabilities were identified and validated before and
after mitigations. The strategy followed good secure development practices (query parameterization, input vali-
dation, hardening HTTP headers, CORS control, and secure error handling). An average 67.3% reduction in the
risk level and the elimination of critical findings were observed, which demonstrates the efficiency of integrating
security into the SSDLC (Software Development Lifecycle). The proposed protocol, aligned with OWASP Top
10 (2021), ISO/IEC 27002:2022, and NIST SP 800-53, is replicable in academic and corporate environments.
Keywords: Computer application; Information technology (software); Safety measure; Security; Information
technology.

Introducción

La transformación digital ha reconfigurado el entorno operativo de las organizaciones,
expandiendo la superficie de ataque y elevando la dependencia crítica en las aplicaciones web, lo
que a su vez impone nuevos desafíos en la ciberseguridad y la gestión de riesgos (ResearchGate,
2025). Este escenario se agrava con el aumento exponencial en la complejidad y el costo global del
cibercrimen, el cual se proyecta alcanzará cifras sin precedentes en los próximos años (Cobalt.io,
2023). En este contexto, la capa de aplicación (Capa 7) emerge como el punto más vulnerable de la
arquitectura digital, siendo el objetivo de ataques cada vez más sofisticados que, al imitar el tráfico
legítimo, eluden los mecanismos de detección tradicionales (IJSAT, 2025). Históricamente, la
seguridad se ha abordado de manera reactiva; sin embargo, las fallas persistentes, identificadas
consistentemente por estándares como el OWASP Top 10 (2021), han forzado un cambio de
paradigma hacia la integración proactiva de la seguridad. El marco conceptual y operativo que
responde a esta necesidad es el Ciclo de Vida del Desarrollo de Software Seguro (SSDLC), el
cual exige que las prácticas de seguridad se incorporen desde el diseño hasta la implementación,
alineando los controles técnicos con marcos de gobernanza internacional como el ISO/
IEC 27002:2022 y las guías del NIST SP 800-53 (Doria, 2025). No obstante, la mera elección
de un framework popular, como Laravel, Django o React, que ya incorporan ciertas medidas
defensivas, no garantiza por sí sola la invulnerabilidad, sino que depende de la aplicación rigurosa
de estas buenas prácticas. A pesar de la vasta literatura sobre vulnerabilidades individuales o las
características de seguridad de cada framework, existe una brecha en la investigación empírica
y cuantitativa que demuestre la efectividad comparativa y la replicabilidad de un protocolo de
mitigación estandarizado entre tecnologías con distintos perfiles de riesgo. Por consiguiente,
este artículo presenta un estudio experimental-cuantitativo cuyo objetivo principal es identificar,
implementar y cuantificar la eficacia de las mitigaciones de seguridad basadas en el SSDLC para
lograr una reducción verificable de las vulnerabilidades críticas y de alto riesgo en aplicaciones
web desarrolladas con Laravel, Django y React.

Análisis de vulnerabilidades en aplicaciones web desarrolladas con frameworks populares (Laravel,
Django, React)

3 Macias Mendoza et al.

Metodología

Enfoque experimental–cuantitativo. Diseño aplicado con control de variables en entorno
reproducible (VirtualBox y Docker). Se definieron cuatro fases: (I) preparación del entorno; (II)
desarrollo de aplicaciones base; (III) escaneo con OWASP ZAP y validación con Burp Suite; (IV)
mitigación y reevaluación. Población/muestra: tres aplicaciones representativas por framework.
Técnicas: escaneo activo/pasivo, pruebas manuales dirigidas, verificación de cabeceras y
configuración. Consideraciones éticas: no se emplearon datos personales; los sistemas fueron
construidos para fines académicos. Limitaciones: no se incluyeron pruebas autenticadas complejas
ni APIs GraphQL.

Para cada endpoint ei, cada hallazgo hj obtiene un puntaje CVSS v3.1 (Sij). Se define un peso
wij por criticidad del activo o endpoint. El riesgo del endpoint es:

El riesgo promedio por framework es:

La variación del riesgo se calcula como ΔR= y el porcentaje de reducción del
riesgo como:

Estos valores permiten cuantificar objetivamente la mejora en seguridad tras las mitigaciones.

Figura 1. Diagrama de flujo de la metodología aplicada.

Fuente: elaboración propia

4 Vol. 11 No. 49, 2026. e2601601 | Sección Ingeniería | Peer Reviewed Revista RELIGACION

Resultados

Los hallazgos pre-mitigación incluyeron cabeceras inseguras, CORS permisivo y patrones de
inyección en endpoints de prueba. La aplicación de buenas prácticas (parametrización, validación,
Helmet, desactivar DEBUG, cabeceras CSP/X-Frame-Options/nosniff) eliminó los hallazgos
críticos y redujo el riesgo promedio en 67,3%. La discusión contrasta estos resultados con las
guías de OWASP (2021) y los controles ISO/IEC 27002:2022, destacando que la disciplina de
configuración tiene un peso similar o mayor que las protecciones nativas del framework. ZAP
aporta cobertura automatizada apta para CI/CD, mientras que Burp Suite permite confirmaciones
manuales y exploración de casos límite, reduciendo falsos positivos.

Tabla 1. Comparación detallada de vulnerabilidades pre/post por endpoint

Framework Endpoint
Vulnerabili-

dad
OWASP

2021
Severidad

pre
Severidad

post
Reducción

(%)
Evidencia

Laravel
/index.

php?id=
Inyección

SQL
A03: In-
jection

Alta Baja 72

zap_lara-
vel_pre.json /
zap_laravel_

post.json

Django
/vuln-
sql?id=

Fuga de in-
formación
(DEBUG)

A05:
Security

Misconfi-
guration

Alta Baja 68
burp_djan-

go_500.html

React /
CORS permi-
sivo y cabece-
ras inseguras

A05 / A07 Media Baja 63
zap_react_pre.

html

Fuente: elaboración propia, a partir de los reportes ZAP y Burp Suite

Discusión

Nuestros resultados muestran que mover la seguridad “a la izquierda” (desde el diseño)
reduce hallazgos críticos y baja el riesgo promedio en 67,3% tras la mitigación. La mejora no
proviene de un “framework más seguro”, sino de prácticas consistentes aplicadas con disciplina
sobre cada stack.

Por framework, los efectos más claros fueron:

•	 Laravel (8081): el uso de middleware y Eloquent (parametrización) eliminó patrones
de inyección observados en el laboratorio bulnerable. La verificación con curl -I
confirmó cabeceras endurecidas (p. ej., X-Frame-Options, X-Content-Type-Options) y
ocultamiento de Server/X-Powered-By tras la mitigación.

•	 Django (8082): el SecurityMiddleware y el ORM redujeron la superficie de ataque.
La evidencia pre-mitigación (página DEBUG 500 con traceback) validó el riesgo de
divulgación de información; al desactivar DEBUG y afinar manejo de errores, el vector
desapareció.

Análisis de vulnerabilidades en aplicaciones web desarrolladas con frameworks populares (Laravel,
Django, React)

5 Macias Mendoza et al.

•	 React (8083): al ser front-end, la seguridad dependió del servidor Express. La aplicación
de Helmet y CORS por lista blanca corrigió encabezados débiles y el CORS permisivo
detectado inicialmente.

•	 Herramientas y validez: OWASP ZAP dio cobertura repetible (apta para CI/CD),
detectando fallas de configuración (CSP ausente, X-Frame-Options, HSTS, CORS,
X-Powered-By).

Burp Suite permitió confirmación manual y reducción de falsos positivos.

Repeater ejecutamos payloads SQLi (id=1, id=’1, id=1 OR 1=1--) sobre endpoints de prueba
para contrastar respuestas/códigos. Controlamos validez interna fijando topología y versiones
en VirtualBox/Docker; reforzamos validez externa usando configuraciones típicas (ORM,
middleware, servidor Express).

Lecciones prácticas.

Tres acciones trasladables a producción:

Automatizar ZAP en builds relevantes con umbrales de falla para severidades Alta/Crítica.

Auditar con Burp rutas sensibles (login, subida de archivos, paneles admin).

Estandarizar hardening por stack: parametrización/validación, cabeceras seguras + CSP,
CORS restrictivo, logs sin fuga de detalles, desactivar DEBUG y políticas de dependencias.

Los resultados cuantitativos y cualitativos evidencian una reducción global promedio del 67,3
% en el nivel de riesgo, validando la eficacia del protocolo. La tabla anterior resume los cambios
observados a nivel de endpoint, ofreciendo evidencia verificable y reproducible.

Conclusiones

La integración disciplinada de buenas prácticas con el uso combinado de OWASP ZAP y
Burp Suite reduce de forma medible la superficie de ataque en aplicaciones Laravel, Django y React.
La evidencia pre/post respalda la incorporación de controles en el SSDLC y su automatización en
pipelines, con validaciones manuales periódicas. Se proponen como líneas futuras: integrar SAST/
DAST/IAST, evaluar autenticación/OAuth/OIDC y ampliar a otros stacks.

Limitaciones y trabajo a futuro

Este estudio se desarrolló en entornos de laboratorio controlados, sin incluir flujos
autenticados complejos ni APIs GraphQL. Burp Suite Community Edition carece de ciertas
funciones automatizadas, lo que limita la cobertura. En futuras investigaciones se recomienda:

6 Vol. 11 No. 49, 2026. e2601601 | Sección Ingeniería | Peer Reviewed Revista RELIGACION

•	 integrar escaneos autenticados en pipelines CI/CD;

•	 ampliar el análisis a API REST y OWASP API Security Top 10;

•	 medir precisión y recall mediante conjuntos de datos instrumentados; y

•	 publicar los artefactos experimentales en un repositorio con DOI para auditoría abierta.

Declaraciones requeridas

Disponibilidad de datos y código. Scripts (Docker/ZAP), configuraciones y dataset de hallazgos
estarán disponibles bajo solicitud al autor y en el repositorio privado de la tesis (UCACUE).

Financiación. No se recibió financiación específica para este trabajo.

Conflictos de interés. El autor declara no tener conflictos de interés.

Contribuciones del autor. Conceptualización, Metodología, Investigación, Análisis formal,
Redacción – borrador original, Redacción – revisión y edición: J.N.M.M.

Referencias

Cobalt.io. (2023). Top cybersecurity statistics for 2024. https://n9.cl/xmn1y

Docker. (2024). Docker Compose documentation. https://docs.docker.com/compose/

Doria, S. (2025). What is software security? Analysing and strengthening security efforts in organisa-
tions [Tesis de maestría, Universidad de Åbo Akademi].

FIRST. (2019). Common vulnerability scoring system v3.1: Specification document. https://www.
first.org/cvss/

FIRST — Forum of Incident Response and Security Teams. (s.f.). CVSS v3.1 specification docu-
ment. https://www.first.org/cvss/v3-1/specification-document

International Journal on Science and Technology. (2025). Cybersecurity threats in digital banking:
A comprehensive analysis. International Journal on Science and Technology, 16(1). https://www.
ijsat.org/papers/2025/1/2655.pdf

ISO/IEC. (2022). ISO/IEC 27002:2022 — Controles de seguridad de la información.

Laravel. (2024). Laravel documentation. https://laravel.com/doc

Laravel. (s.f.). Configuration. https://laravel.com/docs/12.x/configuration

National Institute of Standards and Technology. (2020). Security and privacy controls for information
systems and organizations. https://doi.org/10.6028/NIST.SP.800-53r5

OWASP Foundation. (2021). OWASP Top 10: 2021. https://owasp.org/Top10/

PortSwigger Ltd. (2024). Burp Suite Community Edition documentation. https://portswigger.net/
burp/documentation

https://n9.cl/xmn1y
https://docs.docker.com/compose/
https://www.first.org/cvss/
https://www.first.org/cvss/
https://www.first.org/cvss/v3-1/specification-document
https://www.ijsat.org/papers/2025/1/2655.pdf
https://www.ijsat.org/papers/2025/1/2655.pdf
https://laravel.com/doc
https://laravel.com/docs/12.x/configuration
https://doi.org/10.6028/NIST.SP.800-53r5
https://owasp.org/Top10/
https://portswigger.net/burp/documentation
https://portswigger.net/burp/documentation

Análisis de vulnerabilidades en aplicaciones web desarrolladas con frameworks populares (Laravel,
Django, React)

7 Macias Mendoza et al.

ResearchGate. (2025). The impact of digital transformation requirements on risk management. ht-
tps://n9.cl/z33ps

Software Security Foundation. (s.f.). Security in Django. https://n9.cl/a3ave

Autores

Jose Neczar Macias Mendoza. Graduado de tercer nivel en ingeniería en networking y telecomunicaciones de la uni-
versidad de guayaquil, culminando maestría en ciberseguridad en Universidad Católica de Cuenca.
Roberto Omar Andrade Paredes. Ingeniero Electrónico, con una Maestría en Gerencia de Redes y Telecomunica-
ciones, además, cuento con una Maestría en Sistemas de Información con Mención en Inteligencia de Negocios y
Analítica de Datos Masivos. Poseo también un Doctorado en el programa oficial de Doctorado en Software, Sistemas
y Computación.
Juan Pablo Cuenca Tapia. Ingeniero en sistemas con Maestría en Sistemas de Información Gerencial y una Maestría
en Tecnologías de la Información.

Declaración

Conflicto de interés
No tenemos ningún conflicto de interés que declarar.
Financiamiento
Sin ayuda financiera de partes externas a este artículo.
Nota
Tesis para maestría en ciberseguridad

https://n9.cl/z33ps
https://n9.cl/z33ps
https://n9.cl/a3ave

	Análisis de vulnerabilidades en aplicaciones web desarrolladas con frameworks populares (Laravel, Django, React)
	Vulnerability Assessment of Web Applications Using Popular Frameworks (Laravel, Django, React)
	Resumen
	Abstract
	Introducción
	Metodología
	Resultados
	Discusión
	Conclusiones
	Referencias
	Autores
	Declaración

