Analisis de vulnerabilidades en aplicaciones web desarrolladas con
frameworks populares (Laravel, Django, React)

Vulnerability Assessment of Web Applications Using Popular Frameworks (Laravel, Django,
React)

Jose Neczar Macias Mendoza, Roberto Omar Andrade Paredes, Juan Pablo Cuenca Tapia

Resumen

En este articulo presentamos un estudio experimental-cuantitativo sobre vulnerabilidades en aplicaciones
web modernas desarrolladas con Laravel, Django y React. Se construyé un laboratorio replicable con Virtual-
Box y Docker, y se aplicaron OWASP ZAP y Burp Suite en el cual se identificé y valido vulnerabilidades antes
y después de las mitigaciones. La estrategia siguié buenas practicas de desarrollo seguro (parametrizacion de
consultas, validacion de entradas, cabeceras HTTP de endurecimiento, control de CORS y manejo seguro de
errores). Se observo una reduccién promedio del 67,3% en el nivel de riesgo y la eliminacion de hallazgos cri-
ticos, lo cual pone en evidencia la eficiencia de la integracion de seguridades en el SSDLC (Ciclo de Vida del
Desarrollo de Software). El protocolo propuesto, alineado con OWASP Top 10 (2021), ISO/IEC 27002:2022 y
NIST SP 800-53, es replicable en entornos académicos y corporativos.

Palabras clave: Aplicacion informatica; Tecnologia de la informacién (programas); Medida de seguridad; Se-
guridad; Tecnologia de la informacion.

Jose Neczar Macias Mendoza

Universidad Catdlica de Cuenca | Cuenca | Ecuador | jose.macias.21@est.ucacue.edu.ec
https://orcid.org/0009-0008-7442-0901

Roberto Omar Andrade Paredes

Universidad Catdlica de Cuenca | Cuenca | Ecuador | roberto.andrade@ucacue.edu.ec
https://orcid.org/0000-0002-7120-281X

Juan Pablo Cuenca Tapia

Universidad Catdlica de Cuenca | Cuenca | Ecuador | jcuenca@ucacue.edu.ec
https://orcid.org/0000-0001-5982-634X

http://doi.org/10.46652/rgn.v11i49.1601 Enviado: agosto 30, 2025
ISSN 2477-9083 Aceptado: octubre 14, 2025
Vol. 11 No. 49, enero-marzo, 2026, €2601601 Publicado: diciembre 12, 2025
Quito, Ecuador Publicacién Continua

@080 ClCSﬁfm

http://doi.org/10.46652/rgn.v11i49.1601
http://Vol. 11 No. 49, enero-marzo, 2026, e2601579
http://www.religacion.com

Vol. 11 No. 49, 2026. 2601601 | Seccion Ingenieria | Peer Reviewed RELIGACION

Abstract

In this article, we present an experimental-quantitative study on vulnerabilities in modern web applications
developed with Laravel, Django, and React. A replicable laboratory was built with VirtualBox and Docker, and
OWASP ZAP and Burp Suite were applied, in which vulnerabilities were identified and validated before and
after mitigations. The strategy followed good secure development practices (query parameterization, input vali-
dation, hardening HTTP headers, CORS control, and secure error handling). An average 67.3% reduction in the
risk level and the elimination of critical findings were observed, which demonstrates the efficiency of integrating
security into the SSDLC (Software Development Lifecycle). The proposed protocol, aligned with OWASP Top
10 (2021), ISO/IEC 27002:2022, and NIST SP 800-53, is replicable in academic and corporate environments.

Keywords: Computer application; Information technology (software); Safety measure; Security; Information
technology.

Introduccion

La transformacién digital ha reconfigurado el entorno operativo de las organizaciones,
expandiendo la superficie de ataque y elevando la dependencia critica en las aplicaciones web, lo
que a su vez impone nuevos desafios en la ciberseguridad y la gestion de riesgos (ResearchGate,
2025). Este escenario se agrava con el aumento exponencial en la complejidad y el costo global del
cibercrimen, el cual se proyecta alcanzara cifras sin precedentes en los préximos anos (Cobalt.io,
2023). En este contexto, la capa de aplicacion (Capa 7) emerge como el punto mas vulnerable de la
arquitectura digital, siendo el objetivo de ataques cada vez mas sofisticados que, al imitar el trafico
legitimo, eluden los mecanismos de deteccion tradicionales (IJSAT, 2025). Historicamente, la
seguridad se ha abordado de manera reactiva; sin embargo, las fallas persistentes, identificadas
consistentemente por estandares como el OWASP Top 10 (2021), han forzado un cambio de
paradigma hacia la integraciéon proactiva de la seguridad. El marco conceptual y operativo que
responde a esta necesidad es el Ciclo de Vida del Desarrollo de Software Seguro (SSDLC), el
cual exige que las practicas de seguridad se incorporen desde el disefio hasta la implementacion,
alineando los controles técnicos con marcos de gobernanza internacional como el ISO/
IEC 27002:2022 y las guias del NIST SP 800-53 (Doria, 2025). No obstante, la mera eleccion
de un framework popular, como Laravel, Django o React, que ya incorporan ciertas medidas
defensivas, no garantiza por si sola la invulnerabilidad, sino que depende de la aplicacién rigurosa
de estas buenas practicas. A pesar de la vasta literatura sobre vulnerabilidades individuales o las
caracteristicas de seguridad de cada framework, existe una brecha en la investigacién empirica
y cuantitativa que demuestre la efectividad comparativa y la replicabilidad de un protocolo de
mitigacion estandarizado entre tecnologias con distintos perfiles de riesgo. Por consiguiente,
este articulo presenta un estudio experimental-cuantitativo cuyo objetivo principal es identificar,
implementar y cuantificar la eficacia de las mitigaciones de seguridad basadas en el SSDLC para
lograr una reduccién verificable de las vulnerabilidades criticas y de alto riesgo en aplicaciones
web desarrolladas con Laravel, Django y React.

Andlisis de vulnerabilidades en aplicaciones web desarrolladas con frameworks populares (Laravel, Macias Mendoza et a

Django, React)

Metodologia

Enfoque experimental-cuantitativo. Disefio aplicado con control de variables en entorno
reproducible (VirtualBox y Docker). Se definieron cuatro fases: (I) preparacion del entorno; (II)
desarrollo de aplicaciones base; (III) escaneo con OWASP ZAP y validacion con Burp Suite; (IV)
mitigacion y reevaluacion. Poblacién/muestra: tres aplicaciones representativas por framework.
Técnicas: escaneo activo/pasivo, pruebas manuales dirigidas, verificacion de cabeceras y
configuracion. Consideraciones éticas: no se emplearon datos personales; los sistemas fueron

construidos para fines académicos. Limitaciones: no se incluyeron pruebas autenticadas complejas
ni APIs GraphQL.

Para cada endpoint e, cada hallazgo h, obtiene un puntaje CVSS v3.1 (S,). Se define un peso
w, por criticidad del activo o endpoint. El riesgo del endpoint es:

X wi e Sy
> Wij
El riesgo promedio por framework es:
R, DB
N, endpoints
La variacion del riesgo se calcula como AR= y el porcentaje de reduccién del

riesgo como:

Estos valores permiten cuantificar objetivamente la mejora en seguridad tras las mitigaciones.

Figura 1. Diagrama de flujo de la metodologia aplicada.

Fuente: elaboracion propia

Vol. 11 No. 49, 2026. 2601601 | Seccion Ingenieria | Peer Reviewed RELIGACION

Resultados

Los hallazgos pre-mitigacion incluyeron cabeceras inseguras, CORS permisivo y patrones de
inyeccion en endpoints de prueba. La aplicacion de buenas practicas (parametrizacion, validacion,
Helmet, desactivar DEBUG, cabeceras CSP/X-Frame-Options/nosniff) eliminé los hallazgos
criticos y redujo el riesgo promedio en 67,3%. La discusién contrasta estos resultados con las
guias de OWASP (2021) y los controles ISO/IEC 27002:2022, destacando que la disciplina de
configuracién tiene un peso similar o mayor que las protecciones nativas del framework. ZAP
aporta cobertura automatizada apta para CI/CD, mientras que Burp Suite permite confirmaciones
manuales y exploracion de casos limite, reduciendo falsos positivos.

Tabla 1. Comparacion detallada de vulnerabilidades pre/post por endpoint

Vulnerabili- OWASP Severidad Severidad Reduccion

Framework Endpoint dad i pre post %) Evidencia
zap_lara-
Laravel / ind.ex. Inyeccién 603:. In- Alta Baja 7 vel_pre.json /
php?id= SQL jection zap_laravel
post.json
A05:
Fuga de in- . .
) /vuln- . Security . burp_djan-
Django sal?ide formacion Misconfi. Alta Baja 68 o 500.html
T (DEBUG)) o
guration
CORS permi- zap_react_pre
React / sivoy cabece- A05/A07 Media Baja 63 p_reac._pre.

. html
ras inseguras

Fuente: elaboracién propia, a partir de los reportes ZAP y Burp Suite
Discusion

Nuestros resultados muestran que mover la seguridad “a la izquierda” (desde el disefio)
reduce hallazgos criticos y baja el riesgo promedio en 67,3% tras la mitigacién. La mejora no
proviene de un “framework mas seguro”, sino de practicas consistentes aplicadas con disciplina
sobre cada stack.

Por framework, los efectos mas claros fueron:

o Laravel (8081): el uso de middleware y Eloquent (parametrizaciéon) elimind patrones
de inyeccién observados en el laboratorio bulnerable. La verificacién con curl -I
confirmo cabeceras endurecidas (p. ej., X-Frame-Options, X-Content-Type-Options) y
ocultamiento de Server/X-Powered-By tras la mitigacion.

« Django (8082): el SecurityMiddleware y el ORM redujeron la superficie de ataque.
La evidencia pre-mitigaciéon (pagina DEBUG 500 con traceback) validé el riesgo de
divulgacion de informacién; al desactivar DEBUG vy afinar manejo de errores, el vector
desaparecio.

Andlisis de vulnerabilidades en aplicaciones web desarrolladas con frameworks populares (Laravel, Macias Mendoza et a

Django, React)

o React (8083): al ser front-end, la seguridad dependié del servidor Express. La aplicacion
de Helmet y CORS por lista blanca corrigié encabezados débiles y el CORS permisivo
detectado inicialmente.

o Herramientas y validezz OWASP ZAP dio cobertura repetible (apta para CI/CD),
detectando fallas de configuracion (CSP ausente, X-Frame-Options, HSTS, CORS,
X-Powered-By).

Burp Suite permitié confirmacién manual y reduccién de falsos positivos.

Repeater ejecutamos payloads SQLi (id=1, id="1, id=1 OR 1=1--) sobre endpoints de prueba
para contrastar respuestas/codigos. Controlamos validez interna fijando topologia y versiones
en VirtualBox/Docker; reforzamos validez externa usando configuraciones tipicas (ORM,

middleware, servidor Express).
Lecciones practicas.
Tres acciones trasladables a produccion:
Automatizar ZAP en builds relevantes con umbrales de falla para severidades Alta/Critica.
Auditar con Burp rutas sensibles (login, subida de archivos, paneles admin).

Estandarizar hardening por stack: parametrizacion/validacion, cabeceras seguras + CSP,
CORS restrictivo, logs sin fuga de detalles, desactivar DEBUG vy politicas de dependencias.

Los resultados cuantitativos y cualitativos evidencian una reduccién global promedio del 67,3
% en el nivel de riesgo, validando la eficacia del protocolo. La tabla anterior resume los cambios

observados a nivel de endpoint, ofreciendo evidencia verificable y reproducible.

Conclusiones

La integracion disciplinada de buenas practicas con el uso combinado de OWASP ZAP y
Burp Suite reduce de forma medible la superficie de ataque en aplicaciones Laravel, Django y React.
La evidencia pre/post respalda la incorporaciéon de controles en el SSDLC y su automatizacién en
pipelines, con validaciones manuales periddicas. Se proponen como lineas futuras: integrar SAST/
DAST/IAST, evaluar autenticacion/OAuth/OIDC y ampliar a otros stacks.

Limitaciones y trabajo a futuro

Este estudio se desarrollé en entornos de laboratorio controlados, sin incluir flujos
autenticados complejos ni APIs GraphQL. Burp Suite Community Edition carece de ciertas
funciones automatizadas, lo que limita la cobertura. En futuras investigaciones se recomienda:

Vol. 11 No. 49, 2026. 2601601 | Seccion Ingenieria | Peer Reviewed RELIGACION

 integrar escaneos autenticados en pipelines CI/CD;
 ampliar el analisis a API REST y OWASP API Security Top 10;

« medir precision y recall mediante conjuntos de datos instrumentados; y

publicar los artefactos experimentales en un repositorio con DOI para auditoria abierta.

Declaraciones requeridas

Disponibilidad dedatosycédigo. Scripts (Docker/ZAP), configuracionesydataset de hallazgos
estaran disponibles bajo solicitud al autor y en el repositorio privado de la tesis (UCACUE).

Financiacion. No se recibid financiacion especifica para este trabajo.
Conflictos de interés. El autor declara no tener conflictos de interés.

Contribuciones del autor. Conceptualizaciéon, Metodologia, Investigacion, Analisis formal,
Redaccion - borrador original, Redaccion - revision y edicion: J.N.M.M.

Referencias

Cobalt.io. (2023). Top cybersecurity statistics for 2024. https://n9.cl/xmnly
Docker. (2024). Docker Compose documentation. https://docs.docker.com/compose/

Doria, S. (2025). What is software security? Analysing and strengthening security efforts in organisa-
tions [Tesis de maestria, Universidad de Abo Akademi].

FIRST. (2019). Common vulnerability scoring system v3.1: Specification document. https://www.
first.org/cvss/

FIRST — Forum of Incident Response and Security Teams. (s.f.). CVSS v3.1 specification docu-
ment. https://www.first.org/cvss/v3-1/specification-document

International Journal on Science and Technology. (2025). Cybersecurity threats in digital banking:
A comprehensive analysis. International Journal on Science and Technology, 16(1). https://www.
ijsat.org/papers/2025/1/2655.pdf

ISO/IEC. (2022). ISO/IEC 27002:2022 — Controles de seguridad de la informacion.
Laravel. (2024). Laravel documentation. https://laravel.com/doc
Laravel. (s.f.). Configuration. https://laravel.com/docs/12.x/configuration

National Institute of Standards and Technology. (2020). Security and privacy controls for information
systems and organizations. https://doi.org/10.6028/NIST.SP.800-53r5

OWASP Foundation. (2021). OWASP Top 10: 2021. https://owasp.org/Top10/

PortSwigger Ltd. (2024). Burp Suite Community Edition documentation. https://portswigger.net/
burp/documentation

https://n9.cl/xmn1y
https://docs.docker.com/compose/
https://www.first.org/cvss/
https://www.first.org/cvss/
https://www.first.org/cvss/v3-1/specification-document
https://www.ijsat.org/papers/2025/1/2655.pdf
https://www.ijsat.org/papers/2025/1/2655.pdf
https://laravel.com/doc
https://laravel.com/docs/12.x/configuration
https://doi.org/10.6028/NIST.SP.800-53r5
https://owasp.org/Top10/
https://portswigger.net/burp/documentation
https://portswigger.net/burp/documentation

Andlisis de vulnerabilidades en aplicaciones web desarrolladas con frameworks populares (Laravel, Macias Mendoza et a
f POf

Django, React)

ResearchGate. (2025). The impact of digital transformation requirements on risk management. ht-
tps://n9.cl/z33ps

Software Security Foundation. (s.f.). Security in Django. https://n9.cl/a3ave

Autores

Jose Neczar Macias Mendoza. Graduado de tercer nivel en ingenieria en networking y telecomunicaciones de la uni-
versidad de guayaquil, culminando maestria en ciberseguridad en Universidad Catdlica de Cuenca.

Roberto Omar Andrade Paredes. Ingeniero Electrénico, con una Maestria en Gerencia de Redes y Telecomunica-
ciones, ademas, cuento con una Maestria en Sistemas de Informacién con Mencién en Inteligencia de Negocios y
Analitica de Datos Masivos. Poseo también un Doctorado en el programa oficial de Doctorado en Software, Sistemas
y Computacion.

Juan Pablo Cuenca Tapia. Ingeniero en sistemas con Maestria en Sistemas de Informacién Gerencial y una Maestria
en Tecnologias de la Informacion.

Declaracion

Conflicto de interés

No tenemos ningtin conflicto de interés que declarar.
Financiamiento

Sin ayuda financiera de partes externas a este articulo.
Nota

Tesis para maestria en ciberseguridad

https://n9.cl/z33ps
https://n9.cl/z33ps
https://n9.cl/a3ave

	Análisis de vulnerabilidades en aplicaciones web desarrolladas con frameworks populares (Laravel, Django, React)
	Vulnerability Assessment of Web Applications Using Popular Frameworks (Laravel, Django, React)
	Resumen
	Abstract
	Introducción
	Metodología
	Resultados
	Discusión
	Conclusiones
	Referencias
	Autores
	Declaración

