Categorization of self-regenerating materials and their application in architectural construction in the city of Quito, Ecuador
Abstract
Self-healing or self-regenerating materials have the ability to repair and regenerate their internal structure. This developing technology has the potential to increase the durability and lifespan of structures in construction, while lowering maintenance costs and reducing environmental impact. According to bibliographical reviews and studies carried out in Quito, the use of self-regenerating materials in construction can provide a solution to the problems of fissures and cracks that are the most common in the construction of buildings in the city, this because Quito is located in an area of high seismic activity and constant weather variables. The studies showed that the use of self-regenerating materials in construction has a high potential to improve the durability and useful life of construction structures, in addition to expanding awareness of sustainability and reducing the environmental effect of construction waste. The use of self-regenerating materials can be a solution that largely mitigates this problem.
Downloads
Metrics
References
Agrawal, Y., Saxena, R., Gupta, T., & Sharma, R. (2017). Sustainable structures for smart cities and its performance evaluation. International Research Journal of Engineering and Technology, 4(6), 3095-3106
Aguiar Falconi, R. (2019). Peligrosidad sísmica de la costa norte de Ecuador y el terremoto de Pedernales de 2016. Revista Geofísica, (67), 9–24. https://revistasipgh.org/index.php/regeofi/article/view/159
Aguilar, M., & Saldaña, H. (2021). Bio-concreto con la Bacteria Bacillus Subtilis para el Diseño Estructural de Vivienda, Comas. [Tesis pregrado, Universidad César Vallejo]. Repositorio Institucional. https://hdl.handle.net/20.500.12692/90813
Balazs, A.C. (2007). Modeling self-healing materials. Materials Today, 10(9), 18–23. https://doi.org/10.1016/S1369-7021(07)70205-5
Banco Interamericano de Desarrollo. (2020). Perfil de riesgo de desastres por evento sísmico de Ecuador. https://doi.org/10.18235/0002852
Doostkami, H., Roig-Flores, M., & Serna, P. (2021). Self-healing efficiency of Ultra High-Performance Fiber-Reinforced Concrete through permeability to chlorides. Construction and Building Materials, 310, 125168. https://doi.org/10.1016/J.CONBUILDMAT.2021.125168
Feng, J., Rohaizat, R. E. B., & Qian, S. (2022). Polydopamine@carbon nanotube reinforced and calcium sulphoaluminate coated hydrogels encapsulating bacterial spores for self-healing cementitious composites. Cement and Concrete Composites, 133. https://doi.org/10.1016/j.cemconcomp.2022.104712
Gómez-Luna, E., Fernando-Navas, D., Aponte-Mayor, G., & Betancourt-Buitrago, L. A. (2014). Metodología para la revisión bibliográfica y la gestión de información de temas científicos, a través de su estructuración y sistematización. DYNA, 81(184), 158–163. https://doi.org/10.15446/DYNA.V81N184.37066
Gonzalez, A., Parraguez, A., Corvalan, L., Correa, N., Schliebs, E., & Stuckrath, C. (2018). Hormigón autorreparable con bacterias para la infraestructura vial. 13° Congreso Internacional PROVIAL, Arica, Chile.
Hernández-Piedrazul, E., Castañeda-Robles, I. E., & Lizárraga-Mendiola, L. (2022). El bioconcreto como agente reparante en estructuras de concreto. Pädi Boletín Científico De Ciencias Básicas E Ingenierías Del ICBI, 10(Especial2), 176-183. https://doi.org/10.29057/icbi.v10iEspecial2.8667
Johnston, M. L. (2015). A bio-inspired self-healing polymer system for sustainable plastics. [Bachelor’s dissertation, Purdue University]. https://docs.lib.purdue.edu/dissertations/AAI10187984/
Litina, C., & Al-Tabbaa, A. (2020). First generation microcapsule-based self-healing cementitious construction repair materials. Construction and Building Materials, 255, 119389. https://doi.org/10.1016/J.CONBUILDMAT.2020.119389
Reto Kömmerling. (2018, septiembre 04). Materiales que se autoregeneran. https://retokommerling.com/materiales-se-auto-regeneran/
Nakao, W., Osada, T., Nishiwaki, T., & Otsuka, H. (2021). Focus on self-healing materials: recent challenges and innovations. Science and Technology of Advanced Materials, 22(1), 234. https://doi.org/10.1080/14686996.2021.1888528
Nishiwaki, T., Yamada, M., Kikuta, T., Kwon, S., & Mihashi, H. (2013). Experimental study on evaluation of self-healing capability of FRCCs comprising different components. [Conference] 4th International Conference on Self-Healing Materials, Ghent, Belgium
Pariona, J. (2021). Bacterias alcalófilas en la auto-reparación de fisuras en concretos sostenibles. [Tesis pregrado, Universidad Nacional del Centro del Perú] http://hdl.handle.net/20.500.12894/6905
CDC. (2022, March 15). Preparación para un terremoto. https://www.cdc.gov/es/disasters/earthquakes/prepared.html
Quinde, P., & Reinoso, E. (2016). Estudio de peligro sísmico de Ecuador y propuesta de espectros de diseño para la Ciudad de Cuenca. Revista de ingeniería sísmica, 94. https://doi.org/10.18867/ris.94.274
Revista Área Tres. (2022, junio 14). Ingeniería genética, materiales regenerativos y paredes que se reparan solas. https://acortar.link/vEleku
Roy, R., Rossi, E., Silfwerbrand, J., & Jonkers, H. (2021). Self-healing capacity of mortars with added-in bio-plastic bacteria-based agents: Characterization and quantification through micro-scale techniques. Construction and Building Materials, 297, 123793. https://doi.org/10.1016/j.conbuildmat.2021.123793
Sierra Beltran, G., Mera Ortiz, W., & Jonkers, H. M. (2017). Hormigón autorreparable con bacterias y reforzado con fibras naturales: Principios y aplicaciones en Ecuador. Alternativas, 17(3), 207–214. https://doi.org/10.23878/alternativas.v17i3.229
Stabnikov, V., & Ivanov, V. (2016). Biotechnological production of biopolymers and admixtures for eco-efficient construction materials. Biopolymers and Biotech Admixtures for Eco-Efficient Construction Materials, 37–56. https://doi.org/10.1016/B978-0-08-100214-8.00003-8
Tomczak, K., Jakubowski, J., & Kotwica, L. (2021). Enhanced autogenous self-healing of cement-based composites with mechanically activated fluidized-bed combustion fly ash. Construction and Building Materials, 300, 124028. https://doi.org/10.1016/J.CONBUILDMAT.2021.124028
Copyright (c) 2023 Jakelyne Arcos-Tana, Jefferson Torres-Quezada

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.